Confinitary Groups, Almost Disjoint and Dominating Families

نویسندگان

  • Michael Hrusák
  • Juris Steprans
  • Yi Zhang
چکیده

In this paper we show that it is consistent with ZFC that the cardinality of every maximal cofinitary group of Sym(ω) is strictly greater than the cardinal numbers d and a.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cofinitary Groups, almost Disjoint and Dominating Families

In this paper we show that it is consistent with ZFC that the cardinality of every maximal cofinitary group of Sym(co) is strictly greater than the cardinal numbers D and a. ?

متن کامل

Dominating Analytic Families

Let A be an analytic family of sequences of sets of integers. We show that either A is dominated or it contains a continuum of almost disjoint sequences. From this we obtain a theorem by Shelah that a Suslin c.c.c. forcing adds a Cohen real if it adds an unbounded real.

متن کامل

A Model with No Strongly Separable Almost Disjoint Families

We answer a question of Shelah and Steprāns [6] by producing a model of ZFC where there are no strongly separable almost disjoint families. The notion of a strongly separable almost disjoint family is a natural variation on the well known notion of a completely separable almost disjoint family, and is closely related to the metrization problem for countable Fréchet groups.

متن کامل

Mad Families and Their Neighbors

We study several sorts of maximal almost disjoint families, both on a countable set and on uncountable, regular cardinals. We relate the associated cardinal invariants with bounding and dominating numbers and also with the uniformity of the meager ideal and some of its generalizations. 1. Who Are These Families? A Background Check Almost disjoint (ad) families have been a topic of interest in s...

متن کامل

Maximal cofinitary groups revisited

Let κ be an arbitrary regular infinite cardinal and let C denote the set of κ-maximal cofinitary groups. We show that if GCH holds and C is a closed set of cardinals such that 1. κ ∈ C, ∀ν ∈ C(ν ≥ κ), 2. if |C| ≥ κ then [κ, |C|] ⊆ C, 3. ∀ν ∈ C(cof(ν) ≤ κ→ ν ∈ C), then there is a generic extension in which cofinalities have not been changed and such that C = {|G| : G ∈ C}. The theorem generalize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2001